AUTOMATIC RELEVANCE DETERMINATION IN NONNEGATIVE MATRIX FACTORIZATION BASED ON A ZERO-INFLATED COMPOUND POISSON-GAMMA DISTRIBUTION

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Automatic Relevance Determination in Nonnegative Matrix Factorization

Nonnegative matrix factorization (NMF) has become a popular technique for data analysis and dimensionality reduction. However, it is often assumed that the number of latent dimensions (or components) is given. In practice, one must choose a suitable value depending on the data and/or setting. In this paper, we address this important issue by using a Bayesian approach to estimate the latent dime...

متن کامل

Automatic relevance determination in nonnegative matrix factorization with the -divergence

This paper addresses the estimation of the latent dimensionality in nonnegative matrix factorization (NMF) with the -divergence. The -divergence is a family of cost functions that includes the squared euclidean distance, Kullback-Leibler (KL) and Itakura-Saito (IS) divergences as special cases. Learning the model order is important as it is necessary to strike the right balance between data fid...

متن کامل

Zero-Inflated Poisson Factorization for Recommendation Systems

A recommendation system confronts two opposing problems. In order to be practical, recommendations systems need to be quick, efficient, and scale well in both computational complexity and memory cost [7, 23]. This is frequently achieved by reducing the dimensionality of the data [7]. For example, suppose we have N users, M items, and a review matrix R ∈ RN×M consisting of positive integer ratin...

متن کامل

Automatic Rank Determination in Projective Nonnegative Matrix Factorization

Projective Nonnegative Matrix Factorization (PNMF) has demonstrated advantages in both sparse feature extraction and clustering. However, PNMF requires users to specify the column rank of the approximative projection matrix, the value of which is unknown beforehand. In this paper, we propose a method called ARDPNMF to automatically determine the column rank in PNMF. Our method is based on autom...

متن کامل

Automatic Relevance Determination in Nonnegative Matrix Factorization with the $(\beta)$-Divergence

This paper addresses the estimation of the latent dimensionality in nonnegative matrix factorization (NMF) with the β-divergence. The β-divergence is a family of cost functions that includes the squared euclidean distance, Kullback-Leibler (KL) and Itakura-Saito (IS) divergences as special cases. Learning the model order is important as it is necessary to strike the right balance between data f...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of the Japanese Society of Computational Statistics

سال: 2016

ISSN: 0915-2350,1881-1337

DOI: 10.5183/jjscs.1608001_233